Protein interactions and membrane geometry.

نویسندگان

  • Michael Grabe
  • John Neu
  • George Oster
  • Peter Nollert
چکیده

The difficulty in growing crystals for x-ray diffraction analysis has hindered the determination of membrane protein structures. However, this is changing with the advent of a new method for growing high quality membrane protein crystals from the lipidic cubic phase. Although successful, the mechanism underlying this method has remained unclear. Here, we present a theoretical analysis of the process. We show that it is energetically favorable for proteins embedded in the highly curved cubic phase to cluster together in flattened regions of the membrane. This stabilizes the lamellar phase, permitting its outgrowth from the cubic phase. A kinetic barrier-crossing model is developed to determine the free energy barrier to crystallization from the time-dependent growth of protein clusters. Determining the values of key parameters provides both a rational basis for optimizing the experimental procedure for membrane proteins that have not yet been crystallized and insight into the analogous cubic to lamellar transitions in cells. We also discuss the implications of this mechanism for protein sorting at the exit sites of the Golgi and endoplasmic reticulum and the general stabilization of membrane structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

Pathogenic interactions between Helicobacter pylori adhesion protein HopQ and human cell surface adhesion molecules CEACAMs in gastric epithelial cells

Objective(s): The present paper aims to review the studies describing the interactions between HopQ and CEACAMs along with possible mechanisms responsible for pathogenicity of Helicobacter pylori.Materials and Methods: The literature was searched on “PubMed” using different key words including Helicobacter pylori, CEACAM and gastric.<br ...

متن کامل

Developed endplate geometry for uniform contact pressure distribution over PEMFC active area

Contact resistance among the components of a polymer exchange membrane fuel cell (PEMFC) has a crucial effect on cell performance. The geometry of the endplate plays an essential role in the contact pressure distribution over the membrane electrode assembly (MEA) and the amount of contact resistance between plates. In this work, the effects of endplate geometry on the contact pressure distribut...

متن کامل

The simulation of novel annular shape on the Performance in Proton Exchange Membrane Fuel Cell

In this article, one-phase and three dimensional computational fluid dynamics analysis was utilized to investigate the effect of annular field pattern of proton exchange membrane fuel cells (PEMFC) with different geometry on the performances and species distribution. This computational fluid dynamics code is used for solving the equation in single domain namely the flow field, the mass conserva...

متن کامل

Protein and Lactose Separation by Modified Ultrafiltration Membrane using Layer by Layer Technique

Layer-by-Layer (LbL) is a method which can be used for nanoscale coating and surface functionalization of a material. LbL technique mainly uses the electrostatic attracting between charged materials (polyelectrolytes, nanoparticles, etc.) and an oppositely charged surface. In this study, protein separation (BSA) from lactose solution was carried out using the LbL self-assembly method, which was...

متن کامل

The Coating Effect of PANI/Silver on Performance of Polysulfone Membrane Toward Protein Separation

The effects of different coating time of PANI/Silver onto polysulfone (PSf) membrane surface were investigated based on the morphology, contact angle, surface roughness and rejection towards BSA, pepsin and trypsin. The membrane was prepared by employing the pressure deposition method toward phase inversed membrane. Thus, PANI particles were forced to adhere on membrane surface by pressure driv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 84 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2003